Notes

CHROM. 3826

The analysis of oils and fats by gas chromatography

VI. Calculation of equivalent chain length and modified equivalent chain length values

The use of separation factors for the tentative identification of methyleneinterrupted olefinic esters has been reviewed recently ${ }^{1}$. Haken ${ }^{2,3}$ has applied the idea of separation factors to the correlation of GLC retention data and structural parameters by using an equation of the type:

$$
\begin{equation*}
V_{R(x+2, y+1)}=V_{R(x, y)} \times V_{R(x+2, y)} \times V_{R(x, y+1)} \tag{I}
\end{equation*}
$$

where
$x \quad=$ total carbon chain length
$y \quad=$ number of methylene-interrupted double bonds
$V_{n(x+2, y)}=$ ethylene-unit separation factor ${ }^{2,4}$
$V_{R(x, y+1)}=$ Type I separation factors
If eqn. (I) is put into a logarithmic form it becomes:

$$
\begin{equation*}
E C L_{(x+2, y+1)}=E C L_{(x, y)}+2+k_{\mathrm{I}} \tag{2}
\end{equation*}
$$

where h_{1} is the difference in equivalent chain length ($E C L$) values of pairs of esters used to calculate Type I separation factors. In the $E C L$ system the ethylene-unit separation factor should be 2. However, it has been shown ${ }^{1}$ that, for many liquid phases, the semi-log plot of saturated methyl esters is not parallel to those of unsaturated esters and the difference in $E C L$ values of adjacent members of homologous series of unsaturated esters is less than 2 . If modified equivalent chain length (MECL) values ${ }^{6}$ are used the ethylene-unit separation factors are much closer to the expected value of 2 . If eqn. (2) is used in the form

$$
\begin{equation*}
M E C L_{(x+2, y+1)}=M E C L_{(x, y)}+2+h_{r} \tag{3}
\end{equation*}
$$

then agreement between calculated and determined $M E C L$ values would be expected to be better than between the corresponding $E C L$ values.

Jamieson And Reid have shown that the fatty acids of the leaf lipids of Myosotis scorpioides contain relatively large proportions of $18: 2 \omega 6,18: 3 \omega 6,18: 3 \omega 3$, and $18: 4 \omega 3$ and smaller proportions of $I 8: I \omega 9$ and $18: 0$. Using the retention times of the methyl esters of these acids and of the mono-olefinic acids of rape seed oils as standards, $M E C L$ values for a number of C_{20} and C_{22} esters occuring in natural lipids may be calculated using eqn. (3).

Experimental

Separations of methyl esters were carried out on a PE 800 gas chromatograph with the following columns:

TABLE I
average ethylene-unit separation factors for homologous methyl esters

Type of ester	DEGS			$\begin{aligned} & \text { EGSS-X } \\ & \text { I80 } \end{aligned}$	$\begin{aligned} & B D S \\ & 200^{\circ} \end{aligned}$
	150°	170 0°	190°		
Saturated	2.17	1.96	I. 77	1.82	x.87
Monoene	2.06	1.90	1.75	1.78	I.81
Diene	2.06	1.90	1. 75	1.78	I.81
Triene	2.06	1.90	1.77	1.79	1.79
Tetraene	2.06	1.91	1.76	1.78	1.79
Pentaene	2.04	1.90	1.73	1.78	I. 8 I

(i) EGSS-X, $50 \mathrm{~m} \times 0.5 \mathrm{~mm}$ stainless steel, open tubular; 180°
(ii) BDS, 8% on HMDS Chromosorb W; $6 \mathrm{ft} . \times \frac{1}{8} \mathrm{in}$. stainless steel; 200°
$E C L$ values were calculated from the retention data using saturated methyl esters as standards; $M E C L$ values were calculated using the retentions of mono-olefinic methyl esters from rape seed oil as standards ${ }^{1}$. ECL and MECL values on DEGS were calculated from the retention data of Acrmans ${ }^{8}$.

Results and discussion

Table I shows ethylene-unit separation factors obtained by considering fatty acid methyl esters of different homologous series; a homologous series being defined as one with varying chain length, the same $n:$ mber of double bonds and a constant carbon-end chain in each series. It is apparent that, with the stationary phases examined, there is a greater constancy between the different series of olefinic esters than between these esters and those of the saturated series. In a semi-log plot of retention vs. chain length the lines for the olefinic esters would be virtually parallel to each other but would converge with the saturate line.

TABLE II
$h_{\text {I }}$ VALUES FOR PAIRS OF ESTERS USED TO CALCULATE TYPE I SEPARATION FACTORS

Carbon-end chain ratio	DEGS			$\begin{aligned} & E G S S-X \\ & I 80^{\circ} \end{aligned}$	$\begin{aligned} & B D S \\ & 200^{\circ} \end{aligned}$
	I 50°	170°	190°		
6/9	0.51	0.51	0.51	0.56	0.38
8/11	0.46	0.47	0.52	0.54	0.30
5/8	0.29	0.43	0.53	0.44	0.22
4/7	0.42	0.43	0.46	0.53	0.28

Separation factors obtained by difference of $E C L$ values of pairs of esters used to calculate Type I separation factors are shown in Table II. As has been found previously ${ }^{0}$ there are variations in these values depending on the respective carbonend chains. The variations for these values on DEGS decrease as the column temperature increases.
TABLE III

$\operatorname{Ester}_{(x, y)}$	$\underline{\operatorname{Ester}}(x+2, y+1)$		Ester ($x+4, y \dagger 2)$	
ECL MECL	ECL	MECL	$E C L$	MECL
	Calc. Det. Diff.	Calc. Det. Diff.	Calc. Det. Diff.	Calc. Det. Diff.

$150{ }^{\circ}$																
18:2 ${ }^{1} 6$	19.07	18.77	20:3016	20.58	21.44	+0.14	21.26	21.29	-0.03	22:406	24.19	23.62	+0.57	23.77	23.59	+0.18
18:3 ${ }^{1} 6$	19.59	19.32	20:4 46	22.10	21.71	+0.39	21.83	21.58	$+0.25$	22:5 ${ }^{\text {2 }}$ 6	24.61	24.04	+0.57	2.34	24.00	+0.34
18:3 ω^{1}	19.96	19.70	20:4 ${ }^{\text {2 }}$	22.47	22.30	+0.17	22.21	22.22	-0.01	22:503	24.98	24.39	+0.59	24.72	24.48	+0.24
18:4 ${ }^{\text {a }}$	20.45	20.23	20:503	22.96	22.61	+0.35	22.74	22.50	+0.24	22:603	25.47	24.81	$+0.66$	25.25	24.93	+0.32
					Mean	+0.26			+0.11				+0.60			$\underline{+0.27}$
DEGS 170°																
18:206	19.22	18.82	20:3 ${ }^{3} 6$	21.73	21.62	+0.11	21.33	21.32	+0.01	22:4 40	24.24	23.94	+0.30	23.84	23.74	+0.10
18:3 ${ }^{1} 6$	19.73	19.32	20:4 06	22.24	22.00	$+0.24$	21.83	21.72	+0.11	22:5 36	24.75	24.40	+0.35	24.34	24.22	+0.12
18:303	20.32	19.82	20:403	22.83	22.58	+0.25	22.33	22.33	0	22:5 ${ }^{\text {2 }}$	25.34	24.87	+0.47	24.84	24.72	+0.12
18: $4 \omega 3$	20.65	20.33	20:5 ${ }^{\text {2 }}$	23.16	22.92	+0.24	22.71	22.58	+0.13	22:603	25.67	25.26	+0.41	25.35	25.20	$+0.15$
					Mean	+0.21			+0.06				+0.38			+0.12
DEGS 190°																
18:206	19.34	18.83	20:3 $\omega 6$	21.85	21.80	+0.05	21.34	21.38	-0.04	22:4 46	24.36	24.32	+0.04	23.85	23.90	-0.05
18:3 36	19.35	19.33	20:4 06	22.36	22.34	+0.02	21.84	21.92	-0.08	22:5 ${ }^{6} 6$	24.87	24.71	+0.16	24.35	24.43	-0.08
18:3043	20.34	19.35	20:403	22.85	22.90	-0.05	22.36	22.46	-0.10	22:503	25.36	25.20	+0.16	${ }^{2}$ - 87	24.92	-0.05
18:403	- 20.85	20.39	20:503	23.31	23.27	+0.04	22.90	22.96	-0.06	22:603	25.87	25.72	+0.15	25.41	25.45	-0.04
					Mean	+0.02			-0.07				+0.13			-0.05
EGSS-X 180°																
18:2 $\omega 6$	19.35	18.75	20:3 36	21.91	21.8I	+0.10	21.31	21.34	-0.03	22:4 ${ }^{\text {a }}$	22.47	24.17	+0.30	23.87	23.80	+0.07
18:3 $\omega 6$	19.90	19.32	20:4 406	22.46	22.25	+0.21	21.98	21.80	+0.18	22:5 ${ }^{\text {2 }}$ 6	25.02	24.69	+0.33	24.54	24.36	+0.18
18:3 ${ }^{\text {1 }}$	20.31	19.76	20:4 03	22.87	22.78	+0.09	22.32	22.36	-0.04	22:503	25.43	25.14	+0.29	24.88	24.82	+0.06
18:4\%3	20.88	20.36	20:5 ${ }^{\text {2 }}$	23.44	23.23	+0.21	22.92	22.81	+0.11	22:603	26.00	25.68	+0.32	25.48	25.38	+0.10
					Mean	+0.15			$+0.06$				+0.31			+0.10
$B D S 200^{\circ}$																
18:206	18.91	18.52	20:3 36	21.29	21.12	+0.17	20.90	20.88	+0.02	22:406	23.67	23.29	$+0.36$	23.28	23.19	$+0.09$
18:306	19.29	18.91	20:4 46	21.67	21.44	+0.23	21.29	21.17	+0.12	22:5 ${ }^{\text {a }}$	24.05	23.63	+0.42	23.57	23.49	+0.08
18:3 ${ }^{\text {c }}$	19.64	19.30	20:403	22.02	21.84	+0.18	21.68	21.62	+0.06	22:5 ${ }^{\text {2 }}$	24.40	24.04	+0.32	24.06	23.98	+0.08
18:4 63	20.05	19.66	20:503	22.43	22.09	+0.34	22.04	21.91	+0.13	22:603	24.81	24.38	+0.41	24.42	24.34	+0.08
					Mean	+0.23			+0.08				$+0.38$			+0.08

Using eqns. (2) and (3), ECL and $M E C L$ values of esters of the type ($x+2$, $y+1)$ and $(x+4, y+2)$ were calculated from the values for the C_{18} esters (x, y) and the results are shown in Table III. The deviations of calculated values from determined values are less when $M E C L$ is used rather than $E C L$, the only exception being those values from DEGS at 190°. With the C_{20} esters the largest deviations are in the results for the $20: 4 \omega 6$ and $20: 5 \omega 3$ esters. For these esters a Type I 5/8 separation factor would give closer agreement than the use of the larger $6 / 9$ value calculated from the C_{18} esters.

The above method of calculation could be extended by the use of Type II separation factors, e.g. for the EGSS-X column :

$$
\begin{aligned}
M E C L_{20: 2 \omega_{0}}= & M E C L_{20: 4 \omega_{3}}-\text { Type } I_{3 / 0}=22.32-1.76=20.56 \text { (determined } \\
& 20.63) \\
M E C L_{20: 3 \omega_{0}}= & M E C L_{20: 4 \omega_{0}}-\text { Type } I_{3 / 3}=21.98-0.75=21.23 \text { (determined } \\
& 2 I .19)
\end{aligned}
$$

Acknozeledgements

Thanks are due to the Science Research Council for financial assistance for the project of which this is a part.

Chemistry Department,
The Paisley College of Technology,
G. R. Jamieson Paisley (Great Britain)

I G. R2. Jamieson, in F. D. Gunstone (Editor), Topics in Lipid Chemistry, Vol. I, to be pu blished.
2 J. K. Flaken, J. Chromatog., 23 (1966) 375.
3 J. K. Haken, J. Chromatog., 26 (1967) 17.
4 A. T. James and A. J. Martin, Biochem. J., G3 (i956) 144.
5 R. G. Ackman, J. Am. Oil Chemists' Soc., 40 (1963) 504.
6 R. G. Ackman, J. Am. Oil Chemists' Soc., 40 (r963) 558.
7 G. R. Jamieson and E. H. Reid, J. Sci. Food Agr., 19 (ig68) 628
8 IR. G. Ackman, J. Gas Chromatog., i, No. 4 (1963) it.
9 R. G. Acikman and R. D. Burgher, J. Chromatog., it (ig63) r85.
Received October 7th, 1968
J. Chromatog., 39 (19Gg) $71-74$

